133 research outputs found

    The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans

    Get PDF
    Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans (C. elegans) modulates whole animal and DA neuron sensitivity to MeHg. In this study we demonstrate that genetic knockdown of MRP-7 results in a 2-fold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology

    G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans.

    Get PDF
    G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans, and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway

    RNA-Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans

    Get PDF
    Manganese (Mn) is an essential nutrient; nonetheless, excessive amounts can accumulate in brain tissues causing manganism, a severe neurological condition. Previous studies have suggested oxidative stress, mitochondria dysfunction, and impaired metabolism pathways as routes for Mn toxicity. Here, we used the nematode Caenorhabditis elegans to analyze gene expression changes after acute Mn exposure using RNA-Seq. L1 stage animals were exposed to 50 mM MnCl2 for 30 min and analyzed at L4. We identified 746 up- and 1828 downregulated genes (FDR corrected p < 0.05; two-fold change) that included endoplasmic reticulum related abu and fkb family genes, as well as six of seven lipocalin-related (lpr) family members. These were also verified by qRT-PCR. RNA interference of lpr-5 showed a dramatic increase in whole body vulnerability to Mn exposure. Our studies demonstrate that Mn exposure alters gene transcriptional levels in different cell stress pathways that may ultimately contribute to its toxic effects

    Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans

    Get PDF
    Methylmercury (MeHg) is a persistent environmental and dietary contaminant that causes serious adverse developmental and physiologic effects at multiple cellular levels. In order to understand more fully the consequences of MeHg exposure at the molecular level, we profiled gene and miRNA transcripts from the model organism Caenorhabditis elegans. Animals were exposed to MeHg (10µM) from embryo to larval 4 (L4) stage and RNAs were isolated. RNA-seq analysis on the Illumina platform revealed 541 genes up- and 261 genes down-regulated at a cutoff of 2-fold change and false discovery rate-corrected significance q < 0.05. Among the up-regulated genes were those previously shown to increase under oxidative stress conditions including hsp-16.11 (2.5-fold), gst-35 (10.1-fold), and fmo-2(58.5-fold). In addition, we observed up-regulation of 6 out of 7 lipocalin related (lpr) family genes and down regulation of 7 out of 15 activated in blocked unfolded protein response (abu) genes. Gene Ontology enrichment analysis highlighted the effect of genes related to development and organism growth. miRNA-seq analysis revealed 6–8 fold down regulation of mir-37-3p, mir-41-5p, mir-70-3p, and mir-75-3p. Our results demonstrate the effects of MeHg on specific transcripts encoding proteins in oxidative stress responses and in ER stress pathways. Pending confirmation of these transcript changes at protein levels, their association and dissocation characteristics with interaction partners, and integration of these signals, these findings indicate broad and dynamic mechanisms by which MeHg exerts its harmful effects

    The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans

    Get PDF
    This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2–5 nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials

    A Large Sample of BL Lacs from SDSS and FIRST

    Full text link
    We present a large sample of 501 radio-selected BL Lac candidates from the combination of the Sloan Digital Sky Survey (SDSS) Data Release 5 optical spectroscopy and from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) radio survey; this is one of the largest BL Lac samples yet assembled, and each object emerges with homogeneous data coverage. Each candidate is detected in the radio from FIRST and confirmed in SDSS optical spectroscopy to have: (1) no emission feature with measured rest equivalent width larger than 5 Angstroms; and (2) no measured Ca II H/K depression larger than 40%. We subdivide our sample into 426 higher confidence candidates and 75 lower confidence candidates. We argue that contamination from other classes of objects that formally pass our selection criteria is small, and we identify a few very rare radio AGN with unusual spectra that are probably related to broad absorption line quasars. About one-fifth of our sample were known BL Lacs prior to the SDSS. A preliminary analysis of the sample generally supports the standard beaming paradigm. While we recover sizable numbers of low-energy and intermediate-energy cutoff BL Lacs (LBLs and IBLs, respectively), there are indications of a potential bias toward recovering high-energy cutoff BL Lacs (HBLs) from SDSS spectroscopy. Such a large sample may eventually provide new constraints on BL Lac unification models and their potentially peculiar cosmic evolution; in particular, our sample contains a significant number of higher redshift objects, a sub-population for which the standard paradigm has yet to be rigorously constrained.Comment: 16 pages, 13 figures, 6 tables. Accepted for Publication in the Astronomical Journa

    Ultrafast structural changes direct the first molecular events of vision

    Get PDF
    視覚に関わるタンパク質の超高速分子動画 --薄暗いところで光を感じる仕組み--. 京都大学プレスリリース. 2023-03-23.Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation

    Delphi Initiative for Early-Onset Colorectal Cancer (DIRECt) International Management Guidelines

    Get PDF
    Background & aims: Patients with early-onset colorectal cancer (eoCRC) are managed according to guidelines that are not age-specific. A multidisciplinary international group (DIRECt), composed of 69 experts, was convened to develop the first evidence-based consensus recommendations for eoCRC. Methods: After reviewing the published literature, a Delphi methodology was used to draft and respond to clinically relevant questions. Each statement underwent 3 rounds of voting and reached a consensus level of agreement of ≥80%. Results: The DIRECt group produced 31 statements in 7 areas of interest: diagnosis, risk factors, genetics, pathology-oncology, endoscopy, therapy, and supportive care. There was strong consensus that all individuals younger than 50 should undergo CRC risk stratification and prompt symptom assessment. All newly diagnosed eoCRC patients should receive germline genetic testing, ideally before surgery. On the basis of current evidence, endoscopic, surgical, and oncologic treatment of eoCRC should not differ from later-onset CRC, except for individuals with pathogenic or likely pathogenic germline variants. The evidence on chemotherapy is not sufficient to recommend changes to established therapeutic protocols. Fertility preservation and sexual health are important to address in eoCRC survivors. The DIRECt group highlighted areas with knowledge gaps that should be prioritized in future research efforts, including age at first screening for the general population, use of fecal immunochemical tests, chemotherapy, endoscopic therapy, and post-treatment surveillance for eoCRC patients. Conclusions: The DIRECt group produced the first consensus recommendations on eoCRC. All statements should be considered together with the accompanying comments and literature reviews. We highlighted areas where research should be prioritized. These guidelines represent a useful tool for clinicians caring for patients with eoCRC
    corecore